Solving SDP Completely with an Interior Point Oracle
نویسندگان
چکیده
We suppose the existence of an oracle which is able to solve any semidefinite programming (SDP) problem having interior feasible points at both its primal and dual sides. We note that such an oracle might not be able to directly solve general SDPs even after certain regularization schemes such as facial reduction or Ramana’s dual are applied. The main objective of this work is to fill this gap and to show in detail how one can use such an oracle to ‘completely solve’ an arbitrary SDP. Here, we use the term to completely solve an SDP to mean a scheme which works in the following way; given an SDP, the scheme checks whether it is feasible or not, and whenever feasible, computes its optimal value, and if the optimal value is attained, obtains a maximal rank optimal solution. If the optimal value is not attained, computes a feasible solution whose objective value is arbitrarily close to the optimal value. Moreover, if the original SDP is infeasible, it distinguishes between strong and weak infeasibility, and in the case of weak infeasibility, can compute a point in the corresponding affine space whose distance to the positive semidefinite cone is less than an arbitrary small given positive number.
منابع مشابه
Interior Point and Semidefinite Approaches in Combinatorial Optimization
Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...
متن کاملApproximation of Controllable Set by Semidefinite Programming for Open-Loop Unstable Systems with Input Saturation
There are similarities between semidefinite programming and linear programming in theory and practice, e.g., duality theory (see Bellman and Fan [5]), the role of complementary slackness, and efficient solution techniques using interior-point methods (see Nesterov and Nemirovski [11], Wright, [20]). Semidefinite programming has been developed both theoretically and practically for the past few ...
متن کاملAn Interior Point Method for Solving Semidefinite Programs Using Cutting Planes and Weighted Analytic Centers
We investigate solving semidefinite programs SDPs with an interior point method called SDPCUT, which utilizes weighted analytic centers and cutting plane constraints. SDP-CUT iteratively refines the feasible region to achieve the optimal solution. The algorithm uses Newton’s method to compute the weighted analytic center. We investigate different stepsize determining techniques. We found that u...
متن کاملA Survey of Numerical Methods for Nonlinear Semidefinite Programming
Nonlinear semidefinite programming (SDP) problems have received a lot of attentions because of large variety of applications. In this paper, we survey numerical methods for solving nonlinear SDP problems. Three kinds of typical numerical methods are described; augmented Lagrangian methods, sequential SDP methods and primal-dual interior point methods. We describe their typical algorithmic forms...
متن کاملMax-margin Multiple-Instance Learning via Semidefinite Programming
In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multipleinstance learning as a combinatorial maximummargin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015